A Generalization of the z-Buffer Algorithm

Kees van Overveld and Huub van de Wetering
Eindhoven University of Technology
PO Box 513; 5600 MB Eindhoven; The Netherlands

e-mail: wsinkvo®@win.tue.nl, wstahw®wim . .tue.nl

A generalization of the z-buffer algorithm is given that allows for dynamic
updates of a screen image without the necessity of re-drawing the entire scene.
It 1s based on the notion of equivalence classes of pixels, that is groups of pixels
that are covered by the same set of polygons. A data structure for representing
these equivalence classes in an efficient manner is discussed.

1. INTRODUCTION

In rendering 3-dimensional objects, one of the issues to be dealt with is the
elimination of hidden surfaces. Several techniques exist for this ([1]). The appli-
cability of a given technique depends among other things on the representation of
the 3-dimensional object (polygonal or defined by curved surfaces, constructive
solid geometry (CSG) or boundary representation) and on the desired quality of
the resulting image (transparency, cast shadows, reflections and/or refractions,
and so on).

Here we consider only the z-buffer algorithm.

A z-buffer is a two-dimensional array of the same size as the frame buffer and
1t contains for each pixel the depth-value (for that pixel) of the visible object
closest to the viewer. Filling the frame buffer now consists of scan-converting an
object and checking the depth-values against the values already in the z-buffer:
if the newly computed value is closer to the viewer, a pixel is drawn in the frame
buffer and the z-buffer is updated, otherwise nothing happens. In this way the
hidden surfaces are not shown in the frame bufter.

The z-buffer algorithm needs no preprocessing time (apart from initializing
the z-values to —oo in all pixels). It is well suited for both polygonal and
non-polygonal descriptions. However, it i1s rather inefficient when it comes to
interactive applications: indeed, removing or changing merely one single polygon
necessitates re-drawing the entire scene, thus re-examining all polygons.

In this paper, an approach is made to generalize the z-bufter algorithm in
order to arrive at an algorithm that is able to deal with changing scenes. The
idea 1s based on the observation that a local change of the scene i1deally should

219



involve a merely local update of the image. This holds for the original z-buffer
algorithm in case the change consists of adding an object: in case an object
should be removed, however, the information about the part of the scene that
underlays this object is missing (since only the information about the nearest
part of the scene is maintained), and the emanating ‘hole’ cannot be filled.

A first approach for modifying the z-buffer algorithm could be to store in
every pixel references to all the polygons that cover it; this would necessitate a
data structure consisting of a set of polygon references for every pixel. Closer
observation of the state of such a data structure when using it to render a typical
picture would surely reveal that two neighboring pixels have a large chance of
having the same set attached to them: they are so to say equivalent. This
equivalence relation (a formal definition will be given in the next section) gives
rise to equivalence classes, to be called e_classes: groups of pixels having the
same set of polygons covering them. Instead of storing the entire set of these
polygons at every pixel, merely a pointer to the appropriate e_classes suffices.
In order to remove one polygon, say P, P should first be scan-converted again
in order to establish which e_classes are involved, and next merely the pixels
in the union of these e_classes should be drawn again, thereby removing the
references to P from these e_classes. On the other hand, adding a polygon is
slightly more work than in the original z-buffer algorithm, since the e_classes
of all pixels being covered by it should be updated. Finally, care should be
taken every now and then to remove e_classes that are not referenced anymore
In order to prohibit excessive waist of memory space (garbage collection). In
Section 1, algorithms are given for adding and deleting a polygon and for garbage
collection. Although these algorithms are dealing with polygons, they work
equally well for every other brand of 3-dimensional graphics primitives that can
be rendered into a z-buffer.

Although the concept of coherence, that underlies the notion of the e_classes,
causes the storage requirements for the set of e_classes to be considerably less
than the storage that would be needed for naively storing per pixel references
to all polygons covering a pixel, the idea of coherence may be used once more
to reduce the storage requirements even further. Indeed, many of the equivalent
classes will have many polygons in common, and it suffices to store these common
parts only once. The essential changes in the algorithms to achieve this will be
dealt with in Section 2.

Finally, Section 3 contains some remarks concerning the time-space complexity

of the algorithms and discusses other applications of the notion of e class in
rendering and object representation.

1.1. Related work

Maintaining a data structure consisting of sets of objects for increasing interac-
tion speed by enabling incremental computation of a hidden surface algorithm
are also used in [4] and [5]. In [4] a hashing function is used to delimit the
storage needed; this limits the number of objects that can be used. In [5] the
object sets are not stored per pixel as in both [4] and in this paper, but per tile

220



A R A ARt R Vi L i1 P0Gy M PR D e

of some tiling of the frame buffer; consequent] y. 1t 1s not immediately possible
to find the exact set of polygons that have a pixel in common with a deleted
polygon.

In [2] an object space approach is taken as opposed to the image space ap-
proach in this paper. Their incremental hidden surface algorithm is based upon
a special representation for polygons.

In [6] an item buffer is used which also contains for each pixel a set of objects
projecting on that pixel; here these sets are used in a preprocessing step for a
ray tracing algorithm.

\\\\

chical representation of a set of objects; the hierarchy is based upon an ordering
in depth-priority.

In this and the following section, the notion of invariants will be used for cor-
rectness arguments of algorithms. The notation and the typing conventions of
the C-language are applied. For the purpose of notational convenience, a set
primitive 1s assumed to be available. In practice, this can be thought of to be
implemented as arrays or with dynamic allocation.

For pixels, 1t is assumed that the coordinates are restricted to the rectangular
interval PX = [1. XMAX]|[1.YMAX]. This implies that only those parts of
the polygons that fall within this region are considered.

An equivalence class is defined as follows:

(Definition e_class)
typedef struct
{ int n; /* the number of pixels of this e_class */
set of polygon PR; /* the polygons of this e_class*/
} e_class;
(end of definition)

The following global variables will occur in the algorithm.

e_class ECI[NE];
/* all e_classes; assume NE to be sufficiently large x/

int ne ;

/* 0< ne < NE; points to the first empty location in EC */
int z_buff[PX] /* the z-buffer */
int e_buff[PX] ; /* index into EC of the e_class of a pixel */
set of polygon PG; /* the polygons that build a scene */

Note that in any practical implementation of this data structure pointers to
polygons will occur, rather than the objects themselves. Furthermore, note that

array Indexing in C starts at zero. .
The invariants that are to be maintained are the following predicates:

221



PO : (references in e_buff)

The reterences in the e_buff are valid entries in EC.
(the polygon set of e_classes)
The e_class associated with a pixel contains precisely those poly-
gons that cover the pixel
P2 : (the number of pixels in a e_class)
In every e_class e, e.n is the number of pixels that refer to e
P3 : (the z-buffer algorithm)
In every pixel px, z_buff [px] is the largest z-value of all polygons
covering that pixel

In order to give a formal version of these invariants, the following operator is
introduced:

“ TI(p) ’, with p a polygon, is the pixel set onto which p projects.
Using II(), the invariants may be written:

PO: (V,.epx :0 < e buff{pz|< ne)

Pl: (V,epx : ECle.buffipz]]|.PR = {p € PG|px € II(p)})

P2 (v()§@i<7'zfi : EC[l]Il :#{p:E & PXIe"bU'ff[Px] — 7’})

P3: (V.epx :zbuff[px] = max{ ‘the z-value of polygon p at px’|p €
PG A pzx € Il(p)})

In order to initialize the invariants, all elements of z_buff should be set to —oo,
the set PG should be empty and the array EC should contain the reference to
one e_class, EC[0]. The latter contains an empty set EC[0] .PR, and EC[0] .n=

XMAX «x Y MAX. All elements of e_buff should be set to 0. Furthermore ne
should equal 1.

2.1. Polygon addition

Assuming all invariants to hold, a naive version of the algorithm for adding a
polygon is given below. In this algorithm the control structure forscan imple-
ments the scan conversion, including the updating of the z-buffer. The function
union takes as arguments a set and an element and returns the union of these.
T'he function lin_search searches the array E'C for the occurrence of an e_class
with the prescribed set of polygons attached to it and returns its index if so. It
returns ne (that is, the first empty location) if no such e_class can be found.
1'he algorithm to add a polygon to the scene is as follows:

add_polygon(new_pol) (naive algorithm for adding a polygon)
polygon new_pol;

{

pixel px; int e, new_e; set of polygon PR_test:

forscan (px € II (new_pol) )

222



{
e= e_buff [px];
PR_test= union (EC[e] .PR,new_pol);
/* Find e_class containing PR_test */
new_e= lin_search (EC,PR_test);
/* or create a not yet */
if (new_e==ne) { EC[new_e]=(0,PR_test); ne=ne+1; }
/* referenced e_class */

EC[e] .n=EC[e] .n-1:
EC[new_e] .n = EC[new_e]l.n + 1:
e_buff [px]=new_e;

;

h (end of naive algorithm)

The computational expense of this algorithm comes from the function calls to
union and lin_search. Using coherence, both functions may be omitted. In-
deed: instead of manipulating the entire set of polygon references for every pixel,
it suffices to manipulate the reference to the e_class; moreover, for the majority
of the pixels examined within the scan conversion of one polygon, this reference
will remain the same. Assume that no more than ND different e_classes will
be encountered in scan converting one polygon, then the e_classes encountered
thus far may be stored in an array, enc [ND] of type int. The associated array
new_enc [ND] serves to record the corresponding new e_classes. The integer
nd 1s the number of encountered classes. The relation between nd, enc, and
new_enc 1s given by:

nd = # {e_buff[px]|px € p'}

(Vpzenp) : (3o<icnd : e-buff[px| = enc[i] ))
(Vo<i<nd : EC[new_enc|i]].PR = EClenc[i]].PR U {new_pol})

Here, p’ stands for the part of the polygon new_pol already scan converted at a
given instance. Observe that instead of having to search the entire array EC for
the occurrence of the e_class with PR_test as its set of polygons, it suffices to
search the array enc[] for an identical e_class reference, since all e_classes
containing new_pol are referenced in the corresponding entry of new_enc[].

An improved version of the addition algorithm therefore reads:

add_polygon(new_pol)
(Improved version of the addition algorithm)
polygon new_pol;
1
pixel px;
int e,new_e,enc[ND] ,new_enc[ND],i,nd;

223



LA B R iR At B Am ks wh e

;=J‘5"~"f—"-.'-f-'i'rl‘r}‘:'-'-*:r‘—.r;-'i-i*:.-E'lfi,"a:-':-.a':=;:-1:'~tir~{-:~:~';-1:=:.;'.,r.r:u'i-f-ﬁ:‘i.-'..':'-'--'-:-i!'-:I:'~E-E-,-ii'i'-'i":'|=.;:.-'r!'."-:$r!-;%—;‘r.‘:liE’.[:;E:':Fﬁ':r,‘.r.'r':-'ﬁ','r;i.fa:-.r-'i:‘.i'*:a'?,:'|'-..-'-f.-'.f'a':'-;r:j.'f'f,f:-'.!-"_'=;-’;'z-:.-:I':-':'ﬁ;::—,:-;.::‘-::-’.'?ﬁ;f-‘-':-‘:i d.',-".-:'::ﬂl-’-ﬂ:=.:Jf-:!:-r'a';;'::-7i:.r_‘.;:].‘.';'-'.?;j;a;:-“.-‘e:l:-'-;.‘--.'-'p.iji;:‘- I .'-,15'-;:;::—:-:;':‘,-::—:‘i-,"-_':-:-;::-i.-_-‘-irt;z-:-.L,-F:-.-f:',:'..-=:.«:~r-.'-;fﬁ.-:-.r.-_::;.q;:-:-'.-,-!-:5-:-;:5‘.'.r-:e:.-{u-;-;.-',-::.-:fi-.';i-:.-;-., e ; Tl LT bR e A L T %%@WW%W%@

W TR AT i : G i [l E] e e e A e e e e e e e T el e S e e T Lt LT e e bl el gl s e [ R b P e R i B e b a Ty R I HI ke AT R R e b

AR R R SR stk s S e R b e e e e i S sk e e e i ] e D P 1 P A LR Tt fé‘f-"-.-'.r"iig'i'f::f:-'jﬁ:l,!::‘-.E:f-'-'."_.!f::?=-"'~'-,'-':=.'-5'!-'-ii:.',[:;f-'-_.’:!.‘;'r'rir.:f.-ii-,[:"r‘fi%-‘,'-zI-'::ifiéff:E!::::'-i 'f”._.""r.h:'l"""'"r"r'i""rf"'.'r’ﬁ‘l"‘,"-"; Hia it R S DR iR A i i e
s il 1 Y K A B LA B h e RS TLEE s AR ! iFt] ah & d v = d (bt !

nd=0;
forscan (px € Il (new_pol))

{

e=e_buff [px];

i=0; while (enc[i] # e and i<nd) i=i+1; /* Find e_class */
if (i==nd) /* or create e_class containing new_pol */
{

EC[ne] = (0, union (EC[e] .PR,new_pol));

enc[nd]=e;

new_enc[nd]=ne;

nd=nd+1; ne=ne+l1;

}

new_e = new_encli];

EClel.n = EC[e] .n-1;
EC[new_e] .n = EC[new_e] .n+1:
e_buff[px] = new_e;

}

} (end of improved version)

In the above algorithm the linear search loop only searches the array enc,
which contains at most a number of elements equal to the number of differ-
ent e_classes that occur within the current polygon. The number of times this
loop is executed can be reduced by checking the current e_class e_buff [px]
first against the e_class of the previous pixel in the scan conversion and assign-
Ing in case of equality the new e_class of this previous pixel to new_e. Using
scan line coherence in this way the search loop is only executed for a small
fraction of the pixels of a polygon.

2.2. Polygon deletion
Next an algorithm is given for deleting a polygon, say pol. It consists of three
phases:

(1) First, the polygon pol is scan converted once more into the e-buffer.
While doing so, a set of equivalence classes is recorded that are covered by
pol. The numbers of these equivalence classes are stored in an array, the
array e_adapted[NA]. The integer na equals the number of equivalence
classes stored in e_adapted. Furthermore, the part of the z-buffer covered
by pol is initialized to —oo.

(2) Next, during the second phase. the polygons that are contained in these
equivalence classes are recorded in the array re_draw[NR], and the poly-
gon pol 1s removed from the e_classes in e_adapted[]. The integer
nr equals the number of polygons recorded in re_draw. The constants
NA and NR are assumed to be large enough; in practical implementa-
tions, dynamical allocation techniques are useful here. Since recording the

O

224



Ly i T AR AT Fn 3 bl
1 § i ] n::l|' {""'{F—f" ”‘illjiall"'lh"ﬂf"qlg! R e e T LA M Y R b M P G N b, | TELEET L TR A A RN RN B R i B e T )
i b ! iy i £ R R R R Lo

equivalence classes covered by a given polygon does not involve lengthy
hinearly searching EC, a construction as in the ‘im proved version of the
addition algorithm’ appears to be unnecessary. On the other han d, to
avold storing e_class numbers more than once, linear searches in the
array e_adapted[] of encountered e_classes will be necessary.

(3) Finally, in the third phase, the polygons in the array re_draw[] are drawn
again while checking the z-coordinates against the z-buffer.

The algorithm looks as follows:

delete_polygon(pol) (Algorithm for deleting a polygon)
polygon pol;

{

pixel px;

int prev,cur,e_adapted[NA],1i, j,na,nr;

polygon p,re_draw[NR];

na=0; prev=ne; /* PHASE ONE */
forscan (px € IT (pol))

{

z_buf [px]= - oc;

cur=e_buff [px] ;

if (cur # prev)

1

1=0; while (e_adapted[i] # cur and i<na) i=i+1;

if (i==na) e_adapted[nal=cur; na=na+1;

prev=cur;

}
}
nr=0; /* PHASE TWO */
for (i=0;i<na;i=i+1)
{
‘remove pol from EC[e_adapted[i]] .PR’
for (p € EC[e_adapted[i]].PR)
{
j=0; while (j<nr and re_draw([j] # p) j=j+1;
If (j==nr) re_draw[nr]l=p; nr=nr+i;

;
}

for (j=0;j<nr;j=j+1) /* PHASE THREE */
1

’redraw polygon re_drawl[jl, using the z-buffer, but don’t
alter the e_classes ’

;

225



! (end of algorithm for deleting a polygon)

Despite the occurrence of three nested loops in phase two, the above algorithm
18 not unreasonably inefficient, since it only searches among (1) the number of
e_classes covered by pol, (2) the number of polygons in one of these e_classes.
and (3) the array of polygons to be re-drawn, re_draw[]. If all of these three
sets exist of typically 10 or less items, then the total number of operations for
removing one polygon is of the order of 1000. This is comparable to the mere
scan converting of an average polygon.

2.8. Garbage collection

T'he two algorithms for adding and deleting a polygon, respectively, may result
in large numbers of e_classes. Moreover, both during adding and deleting,
e_classes may be formed that are not needed for the functioning of the algo-
rithm. During the addition of a polygon, the value of the n-attribute of the orig-
inal e_class decreases. When this reaches zero, that e_class is not referenced
anymore by any pixel and ought to be removed from EC[]. These e classes
will be referred to as garbage of the first kind. On the other hand. during the
deletion of a polygon, two e_classes that originally had different sets PR might
become to have the same PR, and they therefore should be merged to become
the same e_class. Spurious e_classes in this sense will be called garbage of
the second kind. With respect to the garbage of the first kind, it appears at
first sight that on-the-fly garbage collection might apply here: indeed, at the
Instance an e_class, say at location k in EC[], gets EC [k] .n=0, all references
to k in e_buff have vanished, and the location EC[k] may be taken by the
e_class EC[ne-1], thus freeing the latter location and decrementing ne by one.
T'here is a problem, however, in updating the e_buffer to accommodate this,
since e_classes have no references to the pixel sets referencing to them, and
a complete scan through all pixels seems necessary to replace all references to
ne — 1 by references to k. Therefore on-the-fly garbage collection is not advis-
able. Instead, sophisticated lazy evaluation techniques might be employed. A

simple garbage collector, however, which should be invoked whenever ne reaches
a certain threshold, is given below.

garbage_collect () (Garbage collector algorithm)

1

int replace[NE],r,n;
pixel px;

n=0:
while (n<ne)

{
if (EC[n].n #0)

{

r = r +1; replace[n]=r; EC[r]=EC[n]:

226



Xlibem A P PP A ot o s SR A F g

;
;

for (px € PX ) e_buff[pxl=replace[e_buff [px]];
) (end of garbage collector algorithm)

= n + 1;

After the first loop in this algorithm the following predicates hold. (EC” is the
array EC before execution of the loop)

(v()S‘i<nﬁ ; EC’[j] # 0 — EC[replace[i]] — EC’[i})
(Vosi<ne : replace[i] = # {0 << i[EC'(j].n # 0}

T'hese two predicates indicate that the elements in the array EC with EC’ [i] .n#* 0
are removed and that the remaining entries are put in consecutive entries of EC.
The way in which the entries are changed is stored in the array replace: this
array 1s used in the second loop to replace all old e_class pointers in the e_buff.

An algorithm for merging e_classes that have the same set PR (garbage
collection of the second kind) is much more laborious. Indeed: finding these sets
with less than O(ne x ne) complexity would imply them to be ordered in some
sense, which in turn would imply to have an ordering on the elements within
the set e.PR of every e_class e. Since there are some intricacies involved with
implementing the set type in an efficient manner with respect to the latter or-
dering, no attempt is done here to give an algorithm for garbage collection of the
second kind. Instead, in the next section some alternatives for the representation
of the e_classes are presented that allow for a more straightforward garbage
collection of both first and second kind.

3. EFFICIENT REPRESENTATIONS OF EQUIVALENCE CLASSES

The representation of equivalence classes using the definition of e_class as pre-
sented in Section 1 might seem to be the most natural, it certainly is not the
most efficient. Indeed, with respect to storage requirements it is noted that many
of the elements of EC[NE] have numerous polygons in common. With respect to
computational requirements, maintaining the set variable PR puts a significant
burden on storage allocation computations.

To overcome this, a simple data structure that avoids the need of maintaining
sets of polygons and at the same time saves considerable storage is presented.
It is based on the notion of a tree of equivalence classes. Every e_class is a
node in the tree. In contrast with the original data structure, however, only one
polygon is stored in such a node, instead of all polygons of the class. The one
polygon that is stored is the polygon that distinguishes this e_class from the
e_class it stemmed from (the parent e_class). In additon to this one polygon,
therefore, a node contains a reference to its parent e_class. Moreover, to facil-
itate garbage collection, a node also contains the number of pixels referencing
it and the number of its sons. In the algorithms considered here, no recursive
searching of the tree is needed, thus for simplicity it may be assumed that it is

227



P s e e e Fr Stk E il I T S e,
AL e e R P A e e e Ty P e e e e L
W L L e P e A L e PR U e P VR A e

still represented in linear form in the array EC[NE]. This yields for this type of
e_class, to be referred to as e_t_class (equivalence tree class):

(Definition e_t _class)
typedef struct

{ polygon pol;
/™ polygon distinguishing this e_t_class from its parent */

int n, /* number of pixels of the e_t_class */
m, /* number of sons of this e_t_class */
P; /* index in EC[] of the parent e_t_class */

} e_t_class;
(end of definition)

An example of such an e_t_class tree is depicted in Figure 2a. Here, the three
polygons A, B, and C of Figure 1 are added in that order, and scan conversion
takes place from top to bottom and from left to right. The e_t_classes are
added to the array EC in their order of creation. Every node is labeled with its
index into EC[], the name of its distinguishing polygon, its number of sons, and
its parent e_t_classes, respectively. In Figure 1 the numbers in parentheses
within the different parts of the polygons indicate the distinct e_t_classes.

Note that an e_class maps one-to-one to an e_t_class, so the number of
e_t_classes equals the number of e_classes. No other changes with re-
spect to the global variables occur. The name e_buff[] will still be used
for compatibility (although e_t_buff would be more appropriate). The con-
tents of the set PR of an e_class corresponds with all polygons on the root
path of the associated e_t_class. The root of the tree is EC [0], with initially
ECLO0]) .n=XMAX xYMAX, EC[0] .m=0, EC[0] .p=0 (the root node is its own

parent), EC[0] .pol=no_pol (=a non-occurring polygon).

3.1. Polygon addition
The improved version of add_pol given in the previous section needs only a

slight adjustment, which is given below.

(adaption to add_pol for e_t_classes)

1=0; while (enc[i] # e and i <nd) i=i+1:

if (i==nd)

{

EC[ne] = (new_pol,0,0,e): /* new e_t_class */
EClel].m = EC[e].m + 1; /* add son to EC[e] */

228



T o e B A T T e S o e P A TR G e

A (1) (0)

FIGURE 1.

enc[nd]=e;
new_enc [nd]=ne:
nd=nd+1; ne=ne+1;

}

(end of adaption)

3.2. Polygon deletion

strongly resembles the former version. Merely phase two is organised slightly
different: instead of searching the set PR of an e_class, the root path of an
e_t_class has to be searched. A relevant observation is that a given polygon
occurs at most once 1n every root path. It is necessary, therefore, to traverse the
root path in order to find the polygon to be removed.

nr=0; (PHASE TWO of delete_polygon for e_t_classes)
for (i=0;i<na;i=i+1)

1

eti=e_adapted[i];

while (eti # 0) /* while eti differs from the root node */

{

p=ECleti] .pol
if (pol # pand p # no_pol)

{

j=0; while (j<nr and re_draw[j] # p)j=j+1;
1f (j==nr) re_draw[nr]=p; nr=nr+i1;

}

229



et LT it i ot ot o E S LA 00 8P| o LA e gL et 1 A
B e R R O e
S - . . [ERE] L] | | B L e L e o b B e L R L N T e e el e e i e e R e st e F el o
ip k ¥ I i R i i A A e S O e T L e ek A A o T L A L e | L e A, SRR k] [t g i et r. F T -r-| TEersbmiis I.‘ R e e P L e e e e
A | Lk W L L " s Al Bl e B e e AT X ! it s e R iy Y

else EC[eti] .pol= no_pol;

eti=ECleti] .p;

}

} (end of PHASE TWO)

3.3. Garbage collection

Observe that the above deletion algorithm has left some equivalence classes with
no_pol as their associated polygon. Moreover, note that, unlike the e class
representation, in the case of the e_t_class representation garbage collection
only should take place in the case of the deletion of a polygon. It is a task for
the garbage collector (of the first kind) to remove the nodes that correspond
with deleted polygons. Moreover, when doing first kind garbage collection on
e_t_classes, 1t 1s not allowed to remove nodes k that just have EC[k].n=0;
Indeed: nodes may exist that have no pixels referring to them but that lay on
the root path of other nodes that are referred to. For this reason, nodes k£ may
only be removed if EC[k] .n=0 and EC[k] .m=0. Care should be taken therefore
to decrease EC[] .m whenever appropriate. The new first kind garbage collector
18 given below and consists of two passes:

(1) Inthe first pass nodes with no_pol as distinguishing polygon are removed.
This is done by checking for every node whether or not its parent has a
no_pol; if so the reference to the parent is replaced by a reference to its
grandparent and the registration of the number of sons is adapted. For
reasons of uniformity we consider the root to be its own parent (and,
hence, grandparent).

(2) In the second pass nodes with EC[k] .n=0 A EC[k].m=0 are removed sim-
ilarly as in the garbage collector algorithm given In the previous section.

garbage_collect ()
(Garbage collector algorithm using e_t_classes)
1

int replace[NE],n; pixel PX;
e_t_class son, par, gra;

n=0; /* First pass */
while (n<ne)

{

son=EC[n]; par=EC[son.p]; gra=EC [par.p];
1f (par.pol==no_pol)

{

par.m=par.m-1; /* parent looses a son */
SON.p=par.p; gra.m=gra.m+]; /™ grandparent is new parent™ /
n=n+1;

;

230



n=1; /* Second pass */
while (n<ne)

{

it (EC[n]l.n # O or EC[n]l.m # 0 )

{

r = r +1; replacel[n]=r; EC[r]=EC[n];
;

n =n+ 1;
J
for (i=0;i<ne;i=i+1) EC[i].p=replace[EC[i] .pl;
for (px € PX ) e_buff[px]=replacele_buff[px]];
} (end of garbage collector algorithm using e_t_classes)

The effect of the garbage collector is depicted graphically in Figure 2.

T'he elements of the tuples (i;P;m;p) indicate the index in EC[]. the polygon,
the number of sons, and the index in EC[] of the parent node. respectively:

Figure 2a: original situation; B has to be removed;:

Figure 2b: situation after delete_polygon(B): X’ indicates ‘no_pol’;
Figure 2c: situation after first pass:

Figure 2d: situation after the second pass and garbage collection of
the second kind.

e
N
(1;A;2;0) (3;B;1;0) (6:C;0;0)
SN
(2;B;1;1) (4;C;0;1) (7;C;0;3)
B (5;C;0;2) B o o o

FIGURE 2a

231




d H § ey Ty B T vty el bop st PN g L ot 1 it i | el Bt | el L b | 2 a0 Lt A LA A
S e L R R e R e v e S s [ S i bt bl B S LA e
it ke el E R R LR A RIS T A o A e M T L e DR S ,rc:;{:'-:._-.-:-s-::’::,';a:!:-_:-.:-,-—.-,-.-,i.f.'-:-‘.rr'-:--.-.;.l-',-,-,.;.-5..7—:r.ri..-,-,-.r,-:.-t:.;.r;;!;::;r‘,.-.-,;.If:-=-,-;-;:-,r.—,,,-‘-,*.‘-.-E-..i.:r-al'-'-'-h;-l.-:':';--[-.-i S T e ~}:y|,r:fL|~ i
T AR s T e M i bt o b R e PN RPN | DRI L ‘ il e e e S L e e £ ¥ ity

AT el frapml ™

(0;-;3;-)

(1,A52;0) (3;X;1;0) (6;C;0:0)

/SN '

(2;X;1;1) (4;C;0;1) (7,C;0;3)

(5;C;0;2)

ot o m Ll i -. - .“l"lml el i -
R R e - R . T —

FIGURE 2b

FIGURE 2c

Garbage collection of the second kind using e_t_classes may be achieved in
a straighttorward manner. Indeed, those e_t_classes k that have the same
EClk] .p and the same EC[k] .pol may be merged. Thus merely sorting the
array EC[] on these keys suffices to find all e_t_classes that may be merged.
(A consideration might be to maintain the order of the e_t_classes sorted in

232



(1;A;1;0) (3;C;0:0)

FIGURE 2d

the above sense in order to achieve on-the-fly garbage collection of the second
kind at the expense of a somewhat lower average efficiency).

5. DISCUSSION AND CONCLUSIONS
Several applications exist where varying amounts of attributes are needed to be
available for large amounts of objects. An example is the z-buffer algorithm: the
objects are the pixels, and the attributes that should be available (in order for
the z-buffer algorithm to cope with removing polygons) are the polygons that
cover every pixel. Another example may be found in the field of geometric mod-
elling where a model may consist of several sub-objects, that may be structured
hierarchically. Ideally, of every point of the entire model the question should be
answered to precisely which (sub-)objects that point belongs. A standard solu-
tion, i.e. maintaining dynamically created lists for every object (pixel, point), is
not feasible due to the large computational overhead and the tremendous mems-
ory requirements. In both cases, there is a fair chance for coherency to exist:
hence, the number of different combinations of attribute sets is likely by far less
than the number of objects. A promising alternative then seems to be to as-
soclate precisely one pointer to every object that indexes into a set (array) of
equivalence classes, where every equivalence class represents one unique combi-
nation of attributes. In this paper the idea of the application of such equivalence
classes has been worked out for the case of the z-buffer algorithm. Algorithms
have been presented for adding and deleting objects to a z-buffer that involve a
mere local update of the scene. Moreover, several versions of the representation
of the equivalence classes have been discussed.

The worst-case estimate of the number of equivalence classes (and with that,

233



the efficiency of the garbage collection algorithm and the needed storage re-
quirements) is rather unrealistic. A theoretical upper bound for the number of
equivalence classes given n polygons is 2", whereas in practical cases, the num-
ber of equivalence classes will be of the order of n * m where m is the average
depth complexity of the scene. This makes it very hard to give a general ad-
vice as to which representation to use. Concerning the time-space complexity
of the adding and deleting algorithms a similar remark holds: the worst case
performance could be very bad, but the real complexities are governed by the
average depth complexity of the scene (this is related to the depth of the tree
representation ot the e_t_classes and the size of the sets PR in the e class
representation).

REFERENCES

1. J. FOLEY, A. vAN DaAM, S. FEINER and S. HUGHES (1990). Computer
Graphics: Principles and Practice. Addison-Wesley.

2. A AM. Kuuk, P.JJW. TEN HAGEN and V. AKMAN (1988). An exact
incremental hidden surface removal algorithm. Report CS-R8818, CWI, Am-
sterdam.

3. FREDERIK W. JANSEN (1991). Depth-Order Point Classification Techniques
for CSG Display Algorithms. ACM transactions on Graphics, Vol. 10, No. 1,
pp 40-70.

4. DETLEF KROMKER (1987). Looking at Workstation Architectures from the
Viewpoint of Interaction. Advances in Computer Graphics Hardware I, pp
27-37.

0. MEL SLATER, ALLAN DAVISON and MARK SMITH (1989). Liberation From
Rectangles: a Tiling Method for Dynamic Modification of Ob jects on Raster
Displays. Computers & Graphics, Vol. 13, No. 1, pp 83-89.

0. H. WEGHORST, G. HOOPER and D.P GREENBERG (1984). Improved Com-

putational Methods for Ray Tracing. ACM Transactions on Graphics, Vol.
3, No. 1, pp 52-69.

234



